Allosteric Voltage Gating of Potassium Channels II

نویسندگان

  • Frank T. Horrigan
  • Richard W. Aldrich
چکیده

Large-conductance Ca(2+)-activated K(+) channels can be activated by membrane voltage in the absence of Ca(2+) binding, indicating that these channels contain an intrinsic voltage sensor. The properties of this voltage sensor and its relationship to channel activation were examined by studying gating charge movement from mSlo Ca(2+)-activated K(+) channels in the virtual absence of Ca(2+) (<1 nM). Charge movement was measured in response to voltage steps or sinusoidal voltage commands. The charge-voltage relationship (Q-V) is shallower and shifted to more negative voltages than the voltage-dependent open probability (G-V). Both ON and OFF gating currents evoked by brief (0.5-ms) voltage pulses appear to decay rapidly (tau(ON) = 60 microseconds at +200 mV, tau(OFF) = 16 microseconds at -80 mV). However, Q(OFF) increases slowly with pulse duration, indicating that a large fraction of ON charge develops with a time course comparable to that of I(K) activation. The slow onset of this gating charge prevents its detection as a component of I(gON), although it represents approximately 40% of the total charge moved at +140 mV. The decay of I(gOFF) is slowed after depolarizations that open mSlo channels. Yet, the majority of open channel charge relaxation is too rapid to be limited by channel closing. These results can be understood in terms of the allosteric voltage-gating scheme developed in the preceding paper (Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. J. Gen. Physiol. 114:277-304). The model contains five open (O) and five closed (C) states arranged in parallel, and the kinetic and steady-state properties of mSlo gating currents exhibit multiple components associated with C-C, O-O, and C-O transitions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of β4 Subunit Modulation of BK Channels

Large-conductance (BK-type) Ca(2+)-activated potassium channels are activated by membrane depolarization and cytoplasmic Ca(2+). BK channels are expressed in a broad variety of cells and have a corresponding diversity in properties. Underlying much of the functional diversity is a family of four tissue-specific accessory subunits (beta1-beta4). Biophysical characterization has shown that the be...

متن کامل

Allosteric gating mechanism underlies the flexible gating of KCNQ1 potassium channels.

KCNQ1 (Kv7.1) is a unique member of the superfamily of voltage-gated K(+) channels in that it displays a remarkable range of gating behaviors tuned by coassembly with different β subunits of the KCNE family of proteins. To better understand the basis for the biophysical diversity of KCNQ1 channels, we here investigate the basis of KCNQ1 gating in the absence of β subunits using voltage-clamp fl...

متن کامل

Gating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes

Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...

متن کامل

Complex voltage-dependent behavior of single unliganded calcium-sensitive potassium channels.

study and characterization of unliganded openings is of central significance for the elucidation of gating mechanisms for allosteric ligand-gated ion channels. Unliganded openings have been reported for many channel types, but their low open probability can make it difficult to study their kinetics in detail. Because the large conductance calcium-activated potassium channel mSlo is sensitive to...

متن کامل

Relationship between Pore Occupancy and Gating in BK Potassium Channels

Permeant ions can have significant effects on ion channel conformational changes. To further understand the relationship between ion occupancy and gating conformational changes, we have studied macroscopic and single-channel gating of BK potassium channels with different permeant monovalent cations. While the slopes of the conductance-voltage curve were reduced with respect to potassium for all...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 114  شماره 

صفحات  -

تاریخ انتشار 1999